x^2+4=4+2(x+2)

Simple and best practice solution for x^2+4=4+2(x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2+4=4+2(x+2) equation:



x^2+4=4+2(x+2)
We move all terms to the left:
x^2+4-(4+2(x+2))=0
We calculate terms in parentheses: -(4+2(x+2)), so:
4+2(x+2)
determiningTheFunctionDomain 2(x+2)+4
We multiply parentheses
2x+4+4
We add all the numbers together, and all the variables
2x+8
Back to the equation:
-(2x+8)
We get rid of parentheses
x^2-2x-8+4=0
We add all the numbers together, and all the variables
x^2-2x-4=0
a = 1; b = -2; c = -4;
Δ = b2-4ac
Δ = -22-4·1·(-4)
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{5}}{2*1}=\frac{2-2\sqrt{5}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{5}}{2*1}=\frac{2+2\sqrt{5}}{2} $

See similar equations:

| -0.5x+1=-x+8 | | 3x-5²=5 | | 6(a+3)=12-12a | | 5x^2−9x−47=0 | | -12.88–19.3f=-13.4f+2.42–4.9 | | 18-2b=3(-2b+2) | | 7x^2+16x+62=0 | | ½x^2-3x+5=0 | | |-6k|=30 | | 16-4a=-6a+5 | | (5x-12)-(3x+18)=0 | | (24+x)÷2=20 | | 16=6-(z+8) | | X^2+100x-20000=0 | | 3.69=3x+1 | | 2(x+4)+9=-1 | | g+6.1=18 | | 1/5x+2=11 | | 3x-8=12x+7 | | 24+x÷2=20 | | 5/7=x+3/7 | | -4w-2(w+2)=14 | | 2x-8+5x=-36 | | 5n+6−2=5n+4 | | -29=-v/8 | | 7x-3+7=4x+12-x | | 36=(2x)^2 | | 11d+18=-20–2+13d | | -20+10b=11b | | f=X2 | | 2x/3=x/2+4 | | a+3+2a=-1+31=4 |

Equations solver categories